graph LR; A(Raw FASTQ File) --> |Trimmomatic| B(Clean FASTQ File) A --> |FASTQC| C(QC HTML) B --> |BWA| D(Non Human Reads) B --> |BWA| E(Human Reads) D --> |MetaPhlAn 4| F(MetaPhlAn 4 Abundances<br>Tabular) D --> G("URS (Segal) Abundances<br>Tabular") E --> |GATK4| H(Human Variants<br>Plink) F --> I(Pipeline Metadata) G --> I H --> I C --> I
013-gut_microbiome
Gut microbiome dataset
Description
Metagenomics is the study of genetic material from environmental samples, including microbial communities. It involves sequencing the DNA of all microorganisms in the sample, rather than isolating individual organisms. Metagenomics enables the identification and functional analysis of microorganisms in diverse environments, including soil, water, and the human body.
This dataset maps out the human gut microbiota per participant via shotgun metagenomic sequencing given stool samples. It is then compared to known references of gut flora to measure prevalence of specific microbes.
Introduction
The human gut, a complex and dynamic ecosystem, harbors a myriad of microorganisms collectively known as the gut microbiome. This community plays a critical role in various physiological processes such as immune modulation, metabolic regulation, and even functions as an endocrine organ. However, the vast complexity and diversity of the gut microbiome have remained largely elusive due to traditional culture methods’ limitations. Recent advances in next-generation sequencing technologies, particularly metagenomics, have paved the way for a more comprehensive understanding of the gut microbiome.
Gut metagenomics refers to the study of the collective genetic material of all microorganisms present in the gut, gleaned directly from fecal samples. It provides a powerful tool for the identification and quantification of diverse microbial species and their functional roles, including their influence on metabolic pathways, their virulence factors, antibiotic resistance profiles, and more. Moreover, gut metagenomics can reveal the taxonomic diversity and community structure of the microbiome, offering insights into the intricate relationship between the microbiome and its host.
Measurement protocol
To measure the genetic makeup of the human gut flora given stool samples via metagenomics, the following steps done:
- Collection of stool sample: For each visit, a stool sample is collected from the individual and stored appropriately to preserve the microbial community.
- DNA extraction: DNA is extracted from the stool sample using specialized techniques to isolate the microbial DNA from other materials present in the sample.
- DNA fragmentation and sequencing: The extracted DNA is then fragmented into small pieces and sequenced using high-throughput sequencing technologies.
- Quality control: The resulting raw sequencing data is then pre-processed, removing low-quality reads and artifacts of the sequencing methodology.
- Taxonomic classification: The processed sequencing data is then compared to databases of known microbial sequences to identify and classify the microbial species presence and their respective abundances in the sample.
Data availability
The information is stored in multiple parquet files:
gut_microbiome.parquet
: Sequencing and QC statistics.urs
: Segal Lab relative abundance.metaphlan_*
: 8 tables with MetaPhlAn 4 relative abundances, separated by taxonomic levels.
Relevant links
from pheno_utils import PhenoLoader
= PhenoLoader('gut_microbiome')
pl pl
PhenoLoader for gut_microbiome with
46 fields
2 tables: ['gut_microbiome', 'age_sex']
Data dictionary
dict pl.
folder_id | feature_set | field_string | description_string | bulk_dictionary | relative_location | data_coding | stability | units | sampling_rate | ... | array | debut | completed | transformation | list_of_tags | pandas_dtype | min_plausible_value | max_plausible_value | dependency | parent_dataframe | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
tabular_field_name | |||||||||||||||||||||
collection_timestamp | 13.0 | gut_microbiome | Sampled timestamp | Time sample was given | NaN | gut_microbiome/gut_microbiome.parquet | NaN | Accruing | Time | NaN | ... | Single | NaN | NaN | NaN | Gut Microbiome | datetime64[ns, Asia/Jerusalem] | NaN | NaN | NaN | NaN |
collection_date | 13.0 | gut_microbiome | Sampled date | Date sample was given | NaN | gut_microbiome/gut_microbiome.parquet | NaN | Accruing | Time | NaN | ... | Single | NaN | NaN | NaN | Gut Microbiome | datetime64[ns] | NaN | NaN | NaN | NaN |
timezone | 13.0 | gut_microbiome | Timezone | Timezone | NaN | gut_microbiome/gut_microbiome.parquet | NaN | Accruing | NaN | NaN | ... | Single | NaN | NaN | NaN | Gut Microbiome | category | NaN | NaN | NaN | NaN |
sample_name | 13.0 | gut_microbiome | Sample name | Sample Name | NaN | gut_microbiome/gut_microbiome.parquet | NaN | Accruing | NaN | NaN | ... | Single | NaN | NaN | NaN | Gut Microbiome | string | NaN | NaN | NaN | NaN |
urs_metadata_parquet | 13.0 | urs_abundances_aggregated | URS abundances metadata | Organism classification and taxonomy | NaN | gut_microbiome/gut_microbiome.parquet | NaN | Accruing | NaN | NaN | ... | Single | NaN | NaN | NaN | Gut Microbiome | category | NaN | NaN | NaN | NaN |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
k__Bacteria|p__Verrucomicrobia|c__Verrucomicrobiae|o__Verrucomicrobiales|f__Akkermansiaceae|g__GGB6529|s__GGB6529_SGB9222|t__SGB9222 | NaN | NaN | k__Bacteria|p__Verrucomicrobia|c__Verrucomicro... | t__SGB9222 | NaN | NaN | NaN | NaN | percent | NaN | ... | NaN | NaN | NaN | NaN | NaN | float64 | NaN | NaN | NaN | metaphlan_abundance_strain_parquet |
k__Eukaryota|p__Ascomycota|c__Saccharomycetes|o__Saccharomycetales|f__Saccharomycetaceae|g__Saccharomyces|s__Saccharomyces_cerevisiae|t__EUK4932 | NaN | NaN | k__Eukaryota|p__Ascomycota|c__Saccharomycetes|... | t__EUK4932 | NaN | NaN | NaN | NaN | percent | NaN | ... | NaN | NaN | NaN | NaN | NaN | float64 | NaN | NaN | NaN | metaphlan_abundance_strain_parquet |
k__Eukaryota|p__Eukaryota_unclassified|c__Eukaryota_unclassified|o__Eukaryota_unclassified|f__Entamoebidae|g__Entamoeba|s__Entamoeba_dispar|t__EUK46681 | NaN | NaN | k__Eukaryota|p__Eukaryota_unclassified|c__Euka... | t__EUK46681 | NaN | NaN | NaN | NaN | percent | NaN | ... | NaN | NaN | NaN | NaN | NaN | float64 | NaN | NaN | NaN | metaphlan_abundance_strain_parquet |
k__Eukaryota|p__Eukaryota_unclassified|c__Eukaryota_unclassified|o__Eukaryota_unclassified|f__Eukaryota_unclassified|g__Blastocystis|s__Blastocystis_sp_subtype_1|t__EUK944036 | NaN | NaN | k__Eukaryota|p__Eukaryota_unclassified|c__Euka... | t__EUK944036 | NaN | NaN | NaN | NaN | percent | NaN | ... | NaN | NaN | NaN | NaN | NaN | float64 | NaN | NaN | NaN | metaphlan_abundance_strain_parquet |
k__Eukaryota|p__Eukaryota_unclassified|c__Eukaryota_unclassified|o__Eukaryota_unclassified|f__Hexamitidae|g__Giardia|s__Giardia_intestinalis|t__EUK5741 | NaN | NaN | k__Eukaryota|p__Eukaryota_unclassified|c__Euka... | t__EUK5741 | NaN | NaN | NaN | NaN | percent | NaN | ... | NaN | NaN | NaN | NaN | NaN | float64 | NaN | NaN | NaN | metaphlan_abundance_strain_parquet |
9929 rows × 24 columns